May 17, 2020

Meet the Japanese company that intends to mine the moon

Moon Mining
Space mining
Chloe Lewis
6 min
Meet the Japanese company that intends to mine the moon
We dont know where the future of mining will take us, but for many it certainly involves outer space.

Takeshi Hakamada is one of them. Inspired by the...

We don’t know where the future of mining will take us, but for many it certainly involves outer space.

Takeshi Hakamada is one of them. Inspired by the successes of a nascent commercial space industry, the Star Wars nut turned aerospace engineer founded and now leads ispace lunar – a company with its sights firmly fixed on Earth’s closest astronomical neighbour.

We spoke to Mr Hakamada about the company’s lofty plans to extract resources from the moon.

Tell us a little more about ispace.

ispace was incorporated in Japan in 2010. Since the company’s inception, we have grown steadily, starting from a small office space to a two-floor office space with 16 employees. In 2015, Team HAKUTO, a Google Luna XPRIZE (GLXP) team managed by ispace and with over 60 pro-bono members, won the GLXP Milestone Prize.

ispace specializes in developing micro-robotics that will be used to locate, characterize, extract, produce and deliver resources from the lunar surface to customers on the Moon and in cislunar space.

What is your ultimate vision?

Expand our planet, Expand our Future. Our vision is to create a sustainable ecosystem in outer space and extend the human presence throughout the solar system. The first step is to develop space resources and establish an economy in space. 

ispace aims to be the world's leading lunar exploration company. In the near term, ispace will use its micro robotic systems to locate and characterize resources on the lunar surface. In the long term, ispace aims to process and store the ice it finds as liquid oxygen and liquid hydrogen which can be used and delivered as a fuel for rockets and satellites.

ispace sees the Moon as a prominent destination in any plans for space resource utilization beyond geostationary orbit because of three principle attributes: it is near to the Earth, it has millions of metric tons of water ice and other valuable resources, and scientifically it is extremely important.

In the near future, numerous space agencies and commercial companies intend to pursue exploration on the lunar surface. ispace will not only serve these international players, but also work alongside them to begin a third industrial revolution.

How could this eventually impact Earth-bound mining industries?

Any space resource development activities would have to apply terrestrial mining technologies. The space resource development could then further improve these existing technologies by playing within the harsh restriction of an outer space environment. Terrestrial mining companies could potentially benefit from technologies used for space resource development, as they must be efficient and operate with minimum human intervention.

ispace plans to develop lunar exploration and utilization technology that will span the entire mining ecosystem from scouting potential targets, to prospecting in selected areas of interest, all the way to extraction, refining, storage and delivery.

The robotic technology that ispace is developing for outer space will have many useful applications here on Earth. ispace is currently exploring opportunities to utilize its robotic technology in extreme environments such as around volcanoes, in deep mine shafts, as well as in disaster areas. The rovers may also find use in facility maintenance, construction support, security, and inspection in dangers and hazards areas.

How exactly are you going to do this?

Our initial scouting and prospecting missions will support economic, engineering, and mining models to determine the financial viability of extracting, processing, and eventually delivering lunar resources to customers on the Moon and in cislunar space.

Our upcoming mission with Team HAKUTO will be conducted through a teleoperation from the ground. However, the future prospecting missions must become autonomous as we plan to adopt a swarm exploration using a group of micro-rovers. We may possibly collaborate with astronauts on the ISS to control rovers on the Moon.

What initially turned you onto prospecting the moon?

There is scientific evidence about the abundance of water ice on the Moon.

It is estimated that six billion tons of water is available on the Moon, mostly at the lunar poles. Data analysis of lunar water suggests that the ice is relatively pure, and that it’s accessible - 22% of the Shackleton crater, a crater in the south pole, is covered by water ice.

Who are you working with to drive your ambitions forward?

Google Lunar XPRIZE: The GLXP is the largest prize competition of all time with a reward of $30 million. The GLXP aims to incentivize entrepreneurs to create a new era of affordable access to the Moon and beyond, while inspiring the next generation of scientists, engineers, and explorers. ispace is managing Team Hakuto, the only GLXP team from Japan. Team Hakuto won the $500,000 Milestone Prize in 2015, ranking it amongst the top five of 16 teams.

Space Robotics Laboratory at Tohoku University: ispace is partnered with the Space Robotics Laboratory (SRL) at Tohoku University in Japan. This research laboratory, headed by our director and CTO Professor Kazuya Yoshida, has been active for nearly 20 years, producing technology for real space missions. It is a leader in collaborative development in remote sensing satellite missions and developed robotics and micro-rover technology for JAXA’s Hayabusa I and II sample-return missions. It is also a leader in planetary rovers and on-orbit robotics. SRL has developed several generations of prototype planetary rovers. SRL is also a leader in field robotics. Its notable achievements are collaborative R&D of the first Japanese robot operating in the Fukushima nuclear plant after the disaster and volcano exploration and observation robotic systems combining both ground vehicles and drones. The ispace rovers are the end result of over 10 years of rover development. At SRL, up to twenty students and researchers are actively performing research for ispace’s Hakuto project.

Funase Lab, University of Tokyo: Dr. Funase is an associate Professor at University of Tokyo. He led the first small satellite deep space exploration mission (PROCYON) successfully, and his lab has been the leading lab in the field of cubesat and microsat in the world.

He is advising ispace for the development of deep space spacecraft for future mining missions. ispace and Funase-lab agreed a joint research contract for spacecraft design, and the lab assigned two top level graduate students for this joint research.

Dr. Funase’s interest is a flexible transportation system from LEO/GTO to deep space.

Talk us through the three phases of your mission.

The three key steps of any space resource development activities are:

1) Transportation to the Moon or asteroids

By minimizing and miniaturizing components, ispace is able to accelerate the R&D process and offer a frequent and low cost transportation service to the Moon.

2) Onsite prospecting of resources

ispace’s current technology focuses on our innovative and light weight micro-rovers. The four-wheeled rover will be used in the Google Lunar XPRIZE and will be the key vehicle for conducting preliminary scouting missions. Our rovers will be used for the future swarm prospecting on the Moon.

The micro-rovers will have the ability to host a number of scientific instruments to gather various types of data from the lunar surface. Big data analytics throughout exploration and prospecting missions will allow high fidelity mapping of the Moon at several locations to identify lunar hazards, precious volatiles, valuable minerals and suitable shelters.

3) Onsite resource extraction and processing

From around 2024, ispace will set up an ISRU facility and begin testing lunar ice mining procedures at a small scale that can eventually be sold to customers on the Moon.

The long-term objective is to sell water extracted from the lunar surface as a fuel to customers in cislunar space and on the lunar surface.

It’s an ambitious timeline - how is everything proceeding thus far?

We have begun our spacecraft/lander development, which is set for operation from 2020. After 2021, we plan to land on the Moon on a monthly basis.

Where do you want to see ispace and space mining in the next 10-15 years?

In 15 years, I would want to see a world where companies, organizations and agencies are buying and selling space resources. This might sound very optimistic, but I believe that startups like ispace can significantly shorten the timeline and realize this vision.

Share article

May 5, 2021

Mining 4.0: How innovation is shaping mines of the future

Bently Nevada
Baker Hughes
Digital Transformation
Industry 4.0
Benjamin Byrne & Chris Engdahl
8 min
How mining's place in the fourth industrial revolution holds the key to the world's carbon neutral future

Mining may be the gateway to the world’s carbon neutral future.  Green energy storage systems, for one, are largely dependent on minerals. According to the World Bank Group, clean energy needs will escalate demand for rare earth minerals by nearly 500% by 2050.

While this growing demand holds much promise for mining companies, it also creates new challenges. Mining operators must navigate the ever-present highly cyclical market conditions and capital-intense operations. Recent trends layer on additional challenges, such as the progressive retirement of the industry’s most experienced workers, increasing regulatory pressures, and rising energy costs. To proactively manage these multiple challenges and capitalize on rising demand, mining companies must innovate and lower operating costs to remain both profitable and viable. 

Why the urgent need for innovation?

Leading mining companies have shown that lower operating expense (OpEx) is a pre-requisite to on-going business success. This need is driven by the cyclical mining market and ever present,, hefty capital requirements, both of which are inherent in the mining industry. And, when demand is high, the OpEx cost component of unplanned downtime grows steeper. Data indicates that, in mining operations, the root cause of OpEx overages lies in maintenance issues that impede operating efficiencies and incur unnecessary costs. Left unaddressed, these gaps will prevent mining companies from fully capitalizing on increasing demand. 

According to McKinsey, mining companies have historically struggled with significant productivity declines, as shown below. In recent years, there is evidence that a slow recovery is underway, however, full resolution is in its’ infancy, primarily rooted in maintenance cost optimization.

Mining Productivity Index

Other data points on current mining operations underscore the urgent call for innovation and change:

  • 70%  operating efficiency due to breakdowns and stalled production, which translates to real potential for increased productivity and throughput
  • 30-50% of mining operations costs spent on maintaining plant, fleet and equipment, so, the magnitude of potential improvements on bottom-line profitability is significant
  • 3-5X cost for urgent repairs and corrective work requests versus planned maintenance, often made evident by tracking the percentage of work orders managed through the planning office.

While change is always difficult, the promise of technology (and Industry 4.0, Mining 4.0) is a welcome and required one for mining companies.  Digital technologies and automation, or Mining 4.0, is defined by smart equipment, drive data-driven (and thus better) decisions, catalyze connected communications and provide easier, more affordable maintenance. From there, mining companies will be able to speed up production, reduce downtime and boost employee safety – three pillars that have challenged mining operations for years.

The first step: Predictive maintenance via condition monitoring

As the first step to regain operational optimization and lower costs, mining companies must get “ahead of the curve” and prevent process interruptions and unplanned downtime. The key is predictive maintenance via condition monitoring systems.  By proactively assessing equipment health, mining operators can be alerted to developing failures before they occur and schedule planned repairs at the lowest possible cost and with minimal impact to production.

Condition monitoring systems are based on the principal that failure is a process, not an event. By monitoring asset characteristics, latent anomalies become apparent well before full failure, allowing for low-cost interventions, root-cause analysis and proactive planning for resolution, thereby mitigating process interruptions. Concurrent with deployment of well-engineered predictive maintenance strategy, a thorough rationalization review can minimize unnecessary or redundant maintenance tasks and, in many cases, eliminate human-induced failure modes.

Maintenance optimization is a powerful lever – and the first step -- to achieving and sustaining lower production costs in mining.

When 14% equals $8 million

Consider this PwC mining example, where predictive maintenance enabled a 14% reduction in maintenance spend by mitigating unplanned downtime to deliver US $8 million savings in operating expense (OpEx).

Goal: Reduce unplanned downtime

Solution: Condition monitoring system on critical equipment


  1. Condition monitoring insights provide operator alerts of potential failures.
  2. Proactive scheduling of repairs moves resolution to occur during planned maintenance, partial outage periods or normal equipment rotations.
  3. Asset availability and reliability increases, production interruptions are minimized and maintenance costs are reduced.

Result: 14% reduction in maintenance spend generates US $8 million in OpEx

Source: PwC “Balancing Uptime and Working Capital: Maintenance and Inventory Strategies in Mining”

Reliability and employee safety

The example above illustrates the dramatic improvements to operating expense as mining operators move from reactive / unplanned to proactive / planned maintenance. With decreased downtime, overall operational reliability also improves and with it, a metric of paramount importance in mining: employee safety.

Studies indicate that more reliable operations are safer operations. That’s because technology serves to reduce human-to-machine interaction and urgent, reactive work declines.  For one industrial company, as shown in the graph below, an OEE (Overall Equipment Effectiveness) improvement of 52% delivered a safety improvement of 69% during a 10-year period. 



Customer Case Study: Slurry pumps

Let’s look at specific mining applications ripe for optimization and maintenance cost savings.  The first is slurry pumps. In mining pumping stations, pump failures are responsible for 97% of unplanned maintenance costs. Pump reliability, however, is crucial in the areas of safety, environmental impact, and efficient transportation.

Key characteristics of slurry pumps can be monitored so that timely analysis of impending issues enable early detection of issues at inception and prior to failure. This avoids unplanned maintenance, unplanned downtime, and averts lost revenue.

In slurry pump applications, dynamic pressure sensors can be used to detect reciprocating diaphragm failures, providing a novel diagnostic to increase pump reliability. The solution is based on these design principles:

  • The hydraulic fluid flexes the diaphragm
  • When the diaphragm flexes, slurry is discharged
  • Abrasive, corrosive slurries prohibit pressure sensor installations in slurry valves
  • Thus, dynamic pressure monitoring of the hydraulic fluid assesses the effectiveness of slurry discharge

The result?  A savings of US $3 million per year, based on maintenance cost recovery and capacity increases for a 10-pump station.

Customer Case Study:  Haul Trucks

In mining operations, haul trucks are another critical asset, as they are relied upon to move raw materials.  Alignment of extraction speed to transportation speed is required to keep operations flowing smoothly.  Mining operators have invested in larger, automated haul trucks to facilitate this timing alignment and optimize logistics. Thus, haul trucks and their operational health is a key enabler of production reliability in mining operations.

Monitoring haul truck health to ensure reliability, however, presents unique challenges.  Because haul trucks are in constant motion, data collection at precise and crucial times with linkage to a monitoring center and diagnostics requires innovative thinking and design.

For one mining company, a custom engineered solution for the haul truck’s control system was designed and installed.  The system was devised to monitor haul truck health in two distinct operating states so that changes in the various failure mode characteristics could be accurately identified:

  1. Running and loaded. In this state, vibration data is collected while the truck is running, loaded and in reverse mode (braking the truck using the electric motor of the electric wheels).
  2. Unloading. During unloading, vibration monitoring data is collected when the haul truck dump or bucket is being raised.

The result?  An estimated savings of US $5 million per year, based on an iron mine fleet of 30 trucks operating at 80% capacity. 

Outcomes like the examples above are possible for mining operations via innovative condition monitoring systems. There are many other condition monitoring mining applications, such as wireless sensors for hoist systems and continuous monitoring for SAG (semi-autogenous grinding) mills that deliver transformational outcomes.  The ultimate payoff for mining companies occurs when these applications and systems scale and interconnect into an operation-wide solution, enabling more holistic optimization.

Benefits of condition monitoring

Condition monitoring is part of Mining 4.0, the transformation driven by the adoption of automation and digital technologies. Mining 4.0 inherently supports the infrastructure and process requirements for condition monitoring systems. Specifically, Mining 4.0 will facilitate capabilities such as digitization, automation, analytics, artificial intelligence and machine learning, establishing a powerful foundation for predictive maintenance solutions and innovation.

Technology and predictive maintenance benefits have the potential to transform mining operations, starting with condition monitoring. In addition to managing and minimizing the impact of failures, mitigating downtime and reducing maintenance costs, condition monitoring systems also help to increase worker safety, reduce energy consumption and meet environmental requirements.

These benefits unleash significant potential for radical and positive changes in mining operations. All condition monitoring systems, however, vary in scope and effectiveness, so proper selection of a design and enablement provider with full-scale capabilities and proven expertise can impact outcomes significantly.

Innovation beyond technology

While innovation and transformation hold great potential, mining companies must go beyond reducing maintenance costs and implementing technology solutions. Companies must work differently and work smarter to capitalize on the full potential of digital technologies and holistic data strategies that deliver operation-wide benefits. For successful adoption, overcoming internal organizational barriers and cultural challenges to digital adoption is equally essential.  

To reduce pressure on capital-intense mining operations, condition monitoring solutions can be “self-funding” initiatives on the journey toward Mining 4.0 as operational benefits of condition monitoring are realized progressively from the early stages of implementation.

The way forward for mining companies is clear -- and full of promise. As the world increasingly relies on mining to produce the minerals needed for green energy, innovative mining leaders will usher in an era of profound global transformation that ultimately benefits us all.

To learn more about condition monitoring systems in mining operations, please reach out to speak with one of us or another experienced professional at Baker Hughes.

Share article