May 17, 2020

What we learned from Abandoned mines in Queensland: Toxic Time Bomb or Employment Opportunity?

Queensland mining
Mining Sites
Australian mini
Dale Benton
4 min
What we learned from ABANDONED MINES IN QUEENSLAND: Toxic Time Bomb or Employment Opportunity?
What we learned from Lock the Gate Alliance'sABANDONED MINES IN QUEENSLAND: Toxic Time Bomb or Employment Opportunity?

There are, as we speak, a gr...

What we learned from Lock the Gate Alliance's ABANDONED MINES IN QUEENSLAND: Toxic Time Bomb or Employment Opportunity?

There are, as we speak, a grand total of 15,300 abandoned mines in the state of Queensland Australia. Out of those mines, 317 fall under the classification of giant, very large, or simply large and unfortunately present quite the environmental and human health impact to locals.

What’s worrying for some is that that number continues to grow.

So, what are we doing about it?

That’s quite the cost….

It is said that to rehabilitate all of those abandoned mines ranges between $1billion and $10 billion plus, looking at current rehabilitation costs around the world. But fear not, despite the rocketing costs the State Government has been allocating $6 million per year to abandoned mines and has announced that there will be an additional $40 million over the next five years.

As you can see though, the numbers don’t really add up and its someway off that $10billion.

That’s quite a job on your hands…

Estimates have revealed that should a “rolling site rehabilitation program” be put in place, up to 6,000 direct and indirect jobs could be created in Queensland.

The program would focus on remediating a cohort of 30 high risk abandoned mine sites at any one time continuously over 25 years.

If there is ever any reason to invest in something, creating work and jobs which will in turn boost the economy and community is a pretty good one if you ask me.

Sometimes creating a new world means tearing down the old one….

The current legislative program in place, which oversees and assess the abandoned mine sites to reduce public health and safety risks, is the Abandoned Mine Lands Program (AMLP). This is administered by the Department of Natural Resources and Mines.

The major concerns that the report highlights are the failure to address the long-term environmental impacts from abandoned mines, with acid mine drainage, radioactive leakage, heavy metal contamination or salinity.

The other flaw in the AMLP is a common one, serious underfunding which means that it is focused mainly on managing public health and safety risks at only a limited number of sites. In actual fact, the Queensland Government has not taken any systematic reviews of the risks and costs associated with the mines.

Despite the pledge of additional funding this does pose the question, does the abandoned mine problem figure at all in the governmental plans?

A question that needs to be answered…

Rehabilitating abandoned mines is not solely the responsibility of the Government. The mining industry, and Australia has a rich and strong mining industry, has avoided the question of abandoned mines.

The report states that their (abandoned mines) presence undermines public confidence in the ability of the industry to manage its environmental impacts in the long-term, its social licence and ultimately its access to land the industry has repeatedly failed to demonstrate any consistent leadership in regards to abandoned mines, the associated legacies and the impact on the industry’s reputation.”

Issues of abandonment….

Over the last two years, the Texas silver mine, the Collingwood tin mine and the Mount Chalmers gold mines have all been added to the ever-growing list of abandoned mines.

The report has identified four recommendations to address abandoned mines:

  1. Establish an independent lead agency: Clarification with regards to Governmental legal jurisdiction over abandoned mines in Queensland. Successful rehabilitation can be achieved through a new independent authority which will oversee the program. This should be advices by independent industry professionals.
  2. Funding and Resources: Funding for the program should come from either a modest mining industry levy or from the interest on a new cash bond system designed to replace the current ineffective mine rehabilitation financial assurance system.
  3. Regulatory structure: New legislation would need to be passed to create a new statutory authority, operational parameters, governance and funding mechanism, which would replace the current AMLP.
  4. New operational policy: A risk based policy reflecting the world’s best practice mine site rehabilitation would be set. This would bring a new set of “first order principles” which would guide investment and be the framework for closure plans. These principles would include:
  • rehabilitate mined land to a condition capable of supporting the uses prior to mining, or to “higher or better” uses;
  • restore the approximate original contour of the land by backfilling, grading, and compacting
  • minimize disturbances to ground and surface water systems by preventing acid mine drainage and ensuring the effective management of salts, toxic substances and sediments so that no creeks, rivers or other water bodies are impacted from mining based on pre-mining baselines and establish a permanent vegetative cover in the affected area commensurate with its use prior to mining


Read the full ABANDONED MINES IN QUEENSLAND: Toxic Time-Bomb or Employment Opportunity?

The October issue of Mining Global Magazine is live!

Follow @MiningGlobal

Get in touch with our editor Dale Benton at [email protected]

Share article

May 5, 2021

Mining 4.0: How innovation is shaping mines of the future

Bently Nevada
Baker Hughes
Digital Transformation
Industry 4.0
Benjamin Byrne & Chris Engdahl
8 min
How mining's place in the fourth industrial revolution holds the key to the world's carbon neutral future

Mining may be the gateway to the world’s carbon neutral future.  Green energy storage systems, for one, are largely dependent on minerals. According to the World Bank Group, clean energy needs will escalate demand for rare earth minerals by nearly 500% by 2050.

While this growing demand holds much promise for mining companies, it also creates new challenges. Mining operators must navigate the ever-present highly cyclical market conditions and capital-intense operations. Recent trends layer on additional challenges, such as the progressive retirement of the industry’s most experienced workers, increasing regulatory pressures, and rising energy costs. To proactively manage these multiple challenges and capitalize on rising demand, mining companies must innovate and lower operating costs to remain both profitable and viable. 

Why the urgent need for innovation?

Leading mining companies have shown that lower operating expense (OpEx) is a pre-requisite to on-going business success. This need is driven by the cyclical mining market and ever present,, hefty capital requirements, both of which are inherent in the mining industry. And, when demand is high, the OpEx cost component of unplanned downtime grows steeper. Data indicates that, in mining operations, the root cause of OpEx overages lies in maintenance issues that impede operating efficiencies and incur unnecessary costs. Left unaddressed, these gaps will prevent mining companies from fully capitalizing on increasing demand. 

According to McKinsey, mining companies have historically struggled with significant productivity declines, as shown below. In recent years, there is evidence that a slow recovery is underway, however, full resolution is in its’ infancy, primarily rooted in maintenance cost optimization.

Mining Productivity Index

Other data points on current mining operations underscore the urgent call for innovation and change:

  • 70%  operating efficiency due to breakdowns and stalled production, which translates to real potential for increased productivity and throughput
  • 30-50% of mining operations costs spent on maintaining plant, fleet and equipment, so, the magnitude of potential improvements on bottom-line profitability is significant
  • 3-5X cost for urgent repairs and corrective work requests versus planned maintenance, often made evident by tracking the percentage of work orders managed through the planning office.

While change is always difficult, the promise of technology (and Industry 4.0, Mining 4.0) is a welcome and required one for mining companies.  Digital technologies and automation, or Mining 4.0, is defined by smart equipment, drive data-driven (and thus better) decisions, catalyze connected communications and provide easier, more affordable maintenance. From there, mining companies will be able to speed up production, reduce downtime and boost employee safety – three pillars that have challenged mining operations for years.

The first step: Predictive maintenance via condition monitoring

As the first step to regain operational optimization and lower costs, mining companies must get “ahead of the curve” and prevent process interruptions and unplanned downtime. The key is predictive maintenance via condition monitoring systems.  By proactively assessing equipment health, mining operators can be alerted to developing failures before they occur and schedule planned repairs at the lowest possible cost and with minimal impact to production.

Condition monitoring systems are based on the principal that failure is a process, not an event. By monitoring asset characteristics, latent anomalies become apparent well before full failure, allowing for low-cost interventions, root-cause analysis and proactive planning for resolution, thereby mitigating process interruptions. Concurrent with deployment of well-engineered predictive maintenance strategy, a thorough rationalization review can minimize unnecessary or redundant maintenance tasks and, in many cases, eliminate human-induced failure modes.

Maintenance optimization is a powerful lever – and the first step -- to achieving and sustaining lower production costs in mining.

When 14% equals $8 million

Consider this PwC mining example, where predictive maintenance enabled a 14% reduction in maintenance spend by mitigating unplanned downtime to deliver US $8 million savings in operating expense (OpEx).

Goal: Reduce unplanned downtime

Solution: Condition monitoring system on critical equipment


  1. Condition monitoring insights provide operator alerts of potential failures.
  2. Proactive scheduling of repairs moves resolution to occur during planned maintenance, partial outage periods or normal equipment rotations.
  3. Asset availability and reliability increases, production interruptions are minimized and maintenance costs are reduced.

Result: 14% reduction in maintenance spend generates US $8 million in OpEx

Source: PwC “Balancing Uptime and Working Capital: Maintenance and Inventory Strategies in Mining”

Reliability and employee safety

The example above illustrates the dramatic improvements to operating expense as mining operators move from reactive / unplanned to proactive / planned maintenance. With decreased downtime, overall operational reliability also improves and with it, a metric of paramount importance in mining: employee safety.

Studies indicate that more reliable operations are safer operations. That’s because technology serves to reduce human-to-machine interaction and urgent, reactive work declines.  For one industrial company, as shown in the graph below, an OEE (Overall Equipment Effectiveness) improvement of 52% delivered a safety improvement of 69% during a 10-year period. 



Customer Case Study: Slurry pumps

Let’s look at specific mining applications ripe for optimization and maintenance cost savings.  The first is slurry pumps. In mining pumping stations, pump failures are responsible for 97% of unplanned maintenance costs. Pump reliability, however, is crucial in the areas of safety, environmental impact, and efficient transportation.

Key characteristics of slurry pumps can be monitored so that timely analysis of impending issues enable early detection of issues at inception and prior to failure. This avoids unplanned maintenance, unplanned downtime, and averts lost revenue.

In slurry pump applications, dynamic pressure sensors can be used to detect reciprocating diaphragm failures, providing a novel diagnostic to increase pump reliability. The solution is based on these design principles:

  • The hydraulic fluid flexes the diaphragm
  • When the diaphragm flexes, slurry is discharged
  • Abrasive, corrosive slurries prohibit pressure sensor installations in slurry valves
  • Thus, dynamic pressure monitoring of the hydraulic fluid assesses the effectiveness of slurry discharge

The result?  A savings of US $3 million per year, based on maintenance cost recovery and capacity increases for a 10-pump station.

Customer Case Study:  Haul Trucks

In mining operations, haul trucks are another critical asset, as they are relied upon to move raw materials.  Alignment of extraction speed to transportation speed is required to keep operations flowing smoothly.  Mining operators have invested in larger, automated haul trucks to facilitate this timing alignment and optimize logistics. Thus, haul trucks and their operational health is a key enabler of production reliability in mining operations.

Monitoring haul truck health to ensure reliability, however, presents unique challenges.  Because haul trucks are in constant motion, data collection at precise and crucial times with linkage to a monitoring center and diagnostics requires innovative thinking and design.

For one mining company, a custom engineered solution for the haul truck’s control system was designed and installed.  The system was devised to monitor haul truck health in two distinct operating states so that changes in the various failure mode characteristics could be accurately identified:

  1. Running and loaded. In this state, vibration data is collected while the truck is running, loaded and in reverse mode (braking the truck using the electric motor of the electric wheels).
  2. Unloading. During unloading, vibration monitoring data is collected when the haul truck dump or bucket is being raised.

The result?  An estimated savings of US $5 million per year, based on an iron mine fleet of 30 trucks operating at 80% capacity. 

Outcomes like the examples above are possible for mining operations via innovative condition monitoring systems. There are many other condition monitoring mining applications, such as wireless sensors for hoist systems and continuous monitoring for SAG (semi-autogenous grinding) mills that deliver transformational outcomes.  The ultimate payoff for mining companies occurs when these applications and systems scale and interconnect into an operation-wide solution, enabling more holistic optimization.

Benefits of condition monitoring

Condition monitoring is part of Mining 4.0, the transformation driven by the adoption of automation and digital technologies. Mining 4.0 inherently supports the infrastructure and process requirements for condition monitoring systems. Specifically, Mining 4.0 will facilitate capabilities such as digitization, automation, analytics, artificial intelligence and machine learning, establishing a powerful foundation for predictive maintenance solutions and innovation.

Technology and predictive maintenance benefits have the potential to transform mining operations, starting with condition monitoring. In addition to managing and minimizing the impact of failures, mitigating downtime and reducing maintenance costs, condition monitoring systems also help to increase worker safety, reduce energy consumption and meet environmental requirements.

These benefits unleash significant potential for radical and positive changes in mining operations. All condition monitoring systems, however, vary in scope and effectiveness, so proper selection of a design and enablement provider with full-scale capabilities and proven expertise can impact outcomes significantly.

Innovation beyond technology

While innovation and transformation hold great potential, mining companies must go beyond reducing maintenance costs and implementing technology solutions. Companies must work differently and work smarter to capitalize on the full potential of digital technologies and holistic data strategies that deliver operation-wide benefits. For successful adoption, overcoming internal organizational barriers and cultural challenges to digital adoption is equally essential.  

To reduce pressure on capital-intense mining operations, condition monitoring solutions can be “self-funding” initiatives on the journey toward Mining 4.0 as operational benefits of condition monitoring are realized progressively from the early stages of implementation.

The way forward for mining companies is clear -- and full of promise. As the world increasingly relies on mining to produce the minerals needed for green energy, innovative mining leaders will usher in an era of profound global transformation that ultimately benefits us all.

To learn more about condition monitoring systems in mining operations, please reach out to speak with one of us or another experienced professional at Baker Hughes.

Share article