May 17, 2020

The Potential of 'Big Data' in Mining

Big Data
Tech
Operations
Rio Tinto
Admin
7 min
The Potential of 'Big Data' in Mining
In the future, people will look back at the last decade of the 20th century and the first decade of the 21st as being the genesis of ‘big data. Wi...

In the future, people will look back at the last decade of the 20th century and the first decade of the 21st as being the genesis of ‘big data’. With the birth of the Internet, wireless networking, and the ever-decreasing cost of digital storage, capturing and storing huge amounts of data has become the rule rather than the exception. Along with the development of the Internet, IP networking has made even more data possible as devices never even dreamt of years ago can now be easily connected.

Who would have thought 20 years ago there would be a time where we could go for a run and instantly know how far we’ve gone, where we’ve gone on a map, the calories burnt and altitude gained, all read from a crystal clear screen on a mobile phone not much bigger than your average wallet.

• [VIDEO] Rio Tinto Unveils Mine of the Future, Hints at Big Data Optimization

• Leveraging BIG DATA in the Mining Industry

There has been a similar explosion of ‘big data’ in mining, albeit slightly behind that of the Internet revolution, but nonetheless, the amount of data now available from mining equipment is staggering. In fact, there is so much data available people often don’t know which way to turn.

Information overload is not a new term, but its use in the past decade has increased dramatically as the amount of data that fills digital storage grows. Collecting data is one thing; displaying it meaningfully is another. Several large mining companies have attempted to quell the information overload problem through the use of remote operations centers (ROC) where relevant information from operations thousands of kilometers away is displayed for management review. For other companies where an ROC is not on the agenda, the challenge of disseminating and displaying vital information remains.

In order to show the challenge of ‘big data’, let’s take a specific example and break it down. In open pit mining, seconds are paramount. Whilst seconds may not play a large part in drill and blast (it’s generally all about meters), in the load and haul cycle a matter of seconds can make or break a production target. Before my current role I was more familiar with underground mining where meters were king. ‘Meters advanced’ is the metric used in underground development. I never really gave much thought to how much emphasis is given to seconds above the ground but it soon becomes obvious when you break it down. Haul cycles are made up of simple segments: traveling, spotting, loading and hauling (there are other segments like waiting and tipping that can be added but we’ll keep it simple for now).

One haul cycle is the total of these activities in minutes and seconds. Each of these activities can be timed individually using a variety of methods. For most operations, a fleet management system that can detect when each of these activities ends and the next starts can provide this information. For example, when a haul truck is moving along a haul road without a load, it is traveling. When full on the same road, it is hauling. The system knows this based on the GPS position of the truck and if it has a load or not. For spotting, the GPS position is used but it also correlates this with the proximity of a load unit and the selection of reverse gear. If all these are true, then the truck must be spotting. Now that we have a way of breaking the activities down, we also have a way of determining the total cycle time. Likewise, as the activities can be captured individually, we can now also display these individually in a variety of formats such as static reports or dynamic dashboards.

So where do the seconds count? Let’s say a haul cycle is 20 minutes in total and consists of the following breakdown:

• Traveling - 5 minutes

• Spotting - 30 seconds

• Loading - 2 minutes

• Hauling - 12.5 minutes

Now we have a baseline that we can compare all other data in order to answer questions such as:

Is 20 minutes good? Can it be improved? How does this operator compare to the others? What happens if the haul route changes?

There are many answers to these questions, but they all have one thing in common: only data can provide objective answers. Let’s tackle the first and third questions – by measuring all operators it will soon become apparent whether 20 minutes is good and where the operator sits in the scale of things. Once you have the answer to those questions you can then answer question number two. If the average is in fact 18 minutes, this operator is well below. Why? Again data can provide the answer, or at least point you in the right direction.

And this is where data can also lead you on a wild goose chase. Having only one source of data may not tell you the full story. What if the reason this haul was 20 minutes was because a shower of rain caused a portion of the haul road to become slippery. This would only be apparent on one or two hauls as the road would soon drain and dry out, creating a temporary increase in the overall total time. The moral of this example is don’t get too wrapped up in the data you fail to see the ‘truth’.

Let’s go back to question two, as this is where we can really show the power of data. Once the data has been verified, we can focus on the cost savings to be had from reducing the cycle time.

This is where engineering and technology can come together to show the potential benefits of ‘big data’. Let’s target a one minute improvement on the cycle time to keep things simple. As the current cycle time is 20 minutes, three cycles are possible in one hour, therefore there is a three minute saving every hour. In a 12-hour shift there is usually 10 effective hours on average, so therefore with one truck across one shift there is 30 minutes extra – more than enough time for an extra load. Now let’s extrapolate that across a fleet of 50 trucks for the year - 1 extra load x 50 trucks x 2 shifts x 365 days = 36,500 extra loads for the year.

Now let’s work out the potential value of these extra loads. We’ll use best case, round figures to make it easy, but you’ll soon see what a one minute saving each load can add up to.

We’ll use a CAT 793F haul truck with a gold grade of 1 gram\ton. A CAT 793F averages 220 tons per load, therefore there is potentially 220 grams of gold in each load. 220 x 36,500 = 8.03 million grams which is just over 258,000 troy ounces. At a gold price of Aus$1350\ounce that equals Aus$348.3 million. At Aus$200 per ounce profit, that’s a tidy Aus$51.6 million extra profit, all from reducing cycle times by one minute

I did say this was best case – this certainly wouldn’t be the case in the real world as each load isn’t always a premium grade load as there is waste that needs to be moved. There’s a whole host of other factors that would affect the above equation, but it shows the potential of what can be achieved by using ‘big data’.

Now that we’ve seen what ‘big data’ can do for us, the challenge is sharing this information with those decision makers that value the data. For a production engineer, giving him an extra load per hour is like having another truck in the fleet – something that can’t be physically achieved with spending many millions of dollars. But give it to him for free and he’ll be your next best friend. And this precisely is the future challenge facing many – how to capture, interpret and display big data in this age of information overload.

This article was originially published at AustMine.com.au

 

WATCH: Mine of the Future™ – People and Technology Working Together

Share article

Jun 30, 2021

Rio Tinto and Alcoa begin construction with ELYSIS tech

Rio Tinto
ELYSIS
Decarbonisation
Alcoa
3 min
ELYSIS
Rio Tinto and Alcoa’s JV project ELYSIS has the potential to transform the aluminium industry, with a significant reduction in its carbon footprint

Eliminating all direct greenhouse gases from aluminium smelting has taken a major step forward with the start of construction on the first commercial-scale prototype cells of ELYSIS’ inert anode technology, at Rio Tinto’s Alma smelter in Saguenay-Lac-Saint-Jean, Quebec.

ELYSIS has the potential to reduce the carbon footprint of aluminium production

ELYSIS is a joint venture company led by Rio Tinto and Alcoa that is developing a new breakthrough technology, known as inert anode, that eliminates all direct greenhouse gases (GHGs) from the traditional smelting process and instead produces oxygen.

The technology has the potential to transform the aluminium industry, with a significant reduction in its carbon footprint.

The inert anode prototype cells will operate on a commercial scale typical for large modern aluminium smelters, using an electrical current of 450 kiloamperes (kA).

The Honourable Francois-Philippe Champagne, Minister of Innovation, Science and Industry joined representatives from ELYSIS, Rio Tinto and Alcoa to mark the start of construction and announce a further CAD $20mn financial contribution from the Government of Canada to support the project.

The federal government's financial support will enable the creation of a unique commercial size inert anode technology showroom for future customers and will help develop the supply chain by involving local and regional equipment manufacturers and suppliers in the project.

ELYSIS is working to complete the technology demonstration by 2024 followed by the commercialization activities.

ELYSIS technology at a glance:

  • The ELYSIS technology addresses the global trend towards producing low carbon footprint products, from mobile phones to cars, planes and building materials.
  • The new process will reduce operating costs ofaluminiumsmelters while increasing production capacity. It could be used in both new and existing aluminium smelters.
  • In Canada alone, the ELYSIS technology has the potential to reduce GHG emissions by 7 million tons, the equivalent of removing 1.8 million cars from the roads.
  • ELYSIS will also sell next-generation anode and cathode materials, which will last more than 30 times longer than traditional components.

Alcoa and Rio Tinto will continue to support the ELYSIS development program alongside the Governments of Canada and Quebec.

ELYSIS is working closely with Alcoa's Technical Center, where the zero-carbon smelting technology was invented, and the Rio Tinto technology design team in France.

Alcoa's Technical Center supports ELYSIS in the manufacture of proprietary materials for the new anodes and cathodes that are essential to the ELYSIS process. The Rio Tinto technology team in France is creating commercial scale designs for the ELYSIS technology.

 

Vincent Christ, CEO, ELYSIS commented: “This is a great day for ELYSIS. It means that we are becoming the first technology company in the world to build commercial-size inert anode cells. While we refine the technology in our R&D Centre, we start the construction of our prototype cells. This shows our confidence in our process and in the know-how of our team. The combination of ELYSIS' zero CO2 technology and Quebec's renewable energy will be great competitive advantage for the future. I would like to thank the government for its support and all the partners for their commitment.”

Samir Cairae, Rio Tinto Aluminium managing director Atlantic Operations and ELYSIS board member added: “Today marks a real step towards the future of the aluminium industry, by progressing this breakthrough technology to cut carbon emissions. Rio Tinto is committed to supporting its ongoing development here in Quebec where we already use clean hydropower to deliver some of the world’s lowest carbon aluminium. Combining this technology with renewable hydropower holds the promise of zero carbon aluminium smelting.”

Share article