Oct 13, 2020

Researchers get buzz from 'Honeycomb' underground mining

research
Russia
geotechnologies
Bizclik Editor
2 min
This method could significantly reduce effective stresses in rock mass and cut accident rates
This method could significantly reduce effective stresses in rock mass and cut accident rates...

Scientists from the Research Center for Applied Geomechanics and Convergent Mining Technologies at the NUST MISIS Mining College have proposed a new solution for the key mining challenges associated with safety, efficiency and environmental friendliness - creating sustainable 'honeycomb' mine structures underground. 

This technology is a part of the innovative nature-like (convergent) and functional subsoil development, which allows a major reduction in the volume of waste rock storage on the Earth's surface, and enables a scale-down in the rate of industrial accidents and injuries of mine personnel. Up to 400 billion tons of waste rock - often more than the volume of extracted minerals - is taken from the subsoil to be stored on the earth's surface annually.

It avoids large-scale blasting and enables ore to be extracted from vertical 'pipes' drilled underground. The created system of drill holes is a very stable mine structure, similar to the structure of a porous human bone bearing load. The system allows reducing the loss of minerals left in pillars during mining from 50-60 percent to 15-25 percent. It is also convenient to store mining waste in these mined-out voids without lifting it to the surface.

This method of mining significantly reduces effective stresses in rock mass, minimising the risk of rockburst and unpredictable strains and displacements in rocks. As a result, the number of accidents in mines can be reduced. Thanks to the new technology the large-scale waste rock dumps formed during development of the lithosphere may become a thing of the past. The mines applying this technology will reduce waste storage on the surface by 100 percent.

The project, supported by a grant from the Russian Science Foundation, is currently at the basic research stage. Lab tests of physical models of any complexity mine structures are made with 3D modeling methods, creating and validating standard versions of other convergent geotechnologies for underground mining of mineral deposits of any geological types.

Share article

Jun 30, 2021

Rio Tinto and Alcoa begin construction with ELYSIS tech

Rio Tinto
ELYSIS
Decarbonisation
Alcoa
3 min
ELYSIS
Rio Tinto and Alcoa’s JV project ELYSIS has the potential to transform the aluminium industry, with a significant reduction in its carbon footprint

Eliminating all direct greenhouse gases from aluminium smelting has taken a major step forward with the start of construction on the first commercial-scale prototype cells of ELYSIS’ inert anode technology, at Rio Tinto’s Alma smelter in Saguenay-Lac-Saint-Jean, Quebec.

ELYSIS has the potential to reduce the carbon footprint of aluminium production

ELYSIS is a joint venture company led by Rio Tinto and Alcoa that is developing a new breakthrough technology, known as inert anode, that eliminates all direct greenhouse gases (GHGs) from the traditional smelting process and instead produces oxygen.

The technology has the potential to transform the aluminium industry, with a significant reduction in its carbon footprint.

The inert anode prototype cells will operate on a commercial scale typical for large modern aluminium smelters, using an electrical current of 450 kiloamperes (kA).

The Honourable Francois-Philippe Champagne, Minister of Innovation, Science and Industry joined representatives from ELYSIS, Rio Tinto and Alcoa to mark the start of construction and announce a further CAD $20mn financial contribution from the Government of Canada to support the project.

The federal government's financial support will enable the creation of a unique commercial size inert anode technology showroom for future customers and will help develop the supply chain by involving local and regional equipment manufacturers and suppliers in the project.

ELYSIS is working to complete the technology demonstration by 2024 followed by the commercialization activities.

ELYSIS technology at a glance:

  • The ELYSIS technology addresses the global trend towards producing low carbon footprint products, from mobile phones to cars, planes and building materials.
  • The new process will reduce operating costs ofaluminiumsmelters while increasing production capacity. It could be used in both new and existing aluminium smelters.
  • In Canada alone, the ELYSIS technology has the potential to reduce GHG emissions by 7 million tons, the equivalent of removing 1.8 million cars from the roads.
  • ELYSIS will also sell next-generation anode and cathode materials, which will last more than 30 times longer than traditional components.

Alcoa and Rio Tinto will continue to support the ELYSIS development program alongside the Governments of Canada and Quebec.

ELYSIS is working closely with Alcoa's Technical Center, where the zero-carbon smelting technology was invented, and the Rio Tinto technology design team in France.

Alcoa's Technical Center supports ELYSIS in the manufacture of proprietary materials for the new anodes and cathodes that are essential to the ELYSIS process. The Rio Tinto technology team in France is creating commercial scale designs for the ELYSIS technology.

 

Vincent Christ, CEO, ELYSIS commented: “This is a great day for ELYSIS. It means that we are becoming the first technology company in the world to build commercial-size inert anode cells. While we refine the technology in our R&D Centre, we start the construction of our prototype cells. This shows our confidence in our process and in the know-how of our team. The combination of ELYSIS' zero CO2 technology and Quebec's renewable energy will be great competitive advantage for the future. I would like to thank the government for its support and all the partners for their commitment.”

Samir Cairae, Rio Tinto Aluminium managing director Atlantic Operations and ELYSIS board member added: “Today marks a real step towards the future of the aluminium industry, by progressing this breakthrough technology to cut carbon emissions. Rio Tinto is committed to supporting its ongoing development here in Quebec where we already use clean hydropower to deliver some of the world’s lowest carbon aluminium. Combining this technology with renewable hydropower holds the promise of zero carbon aluminium smelting.”

Share article